Вопрос задан 19.06.2018 в 17:06. Предмет Геометрия. Спрашивает Хафизова Диана.

ПОЖАЛУЙСТА:В правильном тетраэдре MABC с ребром корень из 6/2 проведено сечение через середину

ребра АВ параллельно плоскости АМС. Найдите расстояние между плоскостью сечения и плоскостью грани АМСс рисунком:*
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тулегалиев Аслан.

Дан правильный тетраэдр МАВС. Все его ребра равны.
АВ=АС=ВС=МА=МВ=МС=√6/2.

Через точку А₁ на ребре АВ, АА₁=А₁В в плоскости треугольника АМВ  проведем прямую параллельную прямой АМ. Получим точку М₁, лежащую на ребре МВ, такую, что ММ₁=М₁В.  АМ || A₁M₁.  Через точку М₁ в грани МВС проведём прямую параллельную МС. Получим точку С₁ на ребре ВС, так что ВС₁=С₁С. МС || М₁С₁
Соединим точки А₁ и С₁, получим треугольник  А₁С₁М₁ - нужное нам сечение.
Причем А₁С₁ || AC, так как является средней линией треугольника АВС.
Каждая сторона треугольника А₁М₁С₁ является средней линией треугольника АМС и А₁М₁=А₁С₁=М₁С₁=√6/4

Чтобы найти расстояние между плоскостями АМС и А₁М₁С₁ опустим перпендикуляр из точки В на плоскость АМС. Так как дан тетраэр, то вершина В проектируется в центр окружности, описанной около правильного треугольника АМС
ОА=ОС=ОМ=R
Аналогично точка О₁ - центр окружности, описанной около правильного треугольника А₁М₁С₁
О₁А₁=О₁С₁=О₁М₁=R/2 в силу подобия треугольников  АМС и А₁М₁С₁ с коэффициентом подобия 2.

радиус окружности описанной около равностороннего треугольника можно найти по формуле

R= \frac{abc}{4S} =  \frac{a\cdot a\cdot a}{4\cdot  \frac{1}{2} \cdot a\cdot a\cdot sin 60 ^{o} } = \frac{a}{ \sqrt{3} }= \frac{a \sqrt{3} }{3}

при a=√6/2 получаем R=√6/2 ·√3/3=√2/2
Тогда по теореме Пифагора ВО²=АВ²-АО²=(√6/2)²-(√2/2)²=6/4 - 2/4=4/4=1
Значит ВО₁=1/2 в силу подобия
и ОО₁=ВО-ВО₁=1/2
Ответ 1/2


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос