
Знайдіть прощу прямокутного трикутника у якого гіпотенуза = 17см а один із катетів 15 см


Ответы на вопрос

За т. Піфагора:
Другий катет = 8 см
Площа прямокутного трикутника дорівнює половині добутку катетів.
S=0.5×8×15=60 см²
Відповідь: 60 см²
Если будут вопросы – обращайтесь :)



Ответ: второй катет равен √(17^2-15^2)=8см. Площадь равна полупроизведению катетов или 15*8/2=(80+40)/2=120/2=60 см^2.
Объяснение:



Щоб знайти другий катет прямокутного трикутника, можна скористатися теоремою Піфагора:
квадрат гіпотенузи дорівнює сумі квадратів катетів:
г^2 = к1^2 + к2^2
де г - гіпотенуза, к1 та к2 - катети.
Підставляємо відомі значення і розв'язуємо рівняння для катета:
17^2 = 15^2 + к2^2
289 = 225 + к2^2
к2^2 = 289 - 225
к2^2 = 64
к2 = √64
к2 = 8
Отже, другий катет дорівнює 8 см.
Проща трикутника обчислюється за формулою:
S = (к1 * к2) / 2
де S - площа трикутника, к1 та к2 - довжини катетів.
Підставляємо відомі значення і обчислюємо:
S = (15 * 8) / 2
S = 60
Отже, площа прямокутного трикутника дорівнює 60 квадратних сантиметрів.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili