
Вопрос задан 20.03.2021 в 15:46.
Предмет Геометрия.
Спрашивает Колоколова Светлана.
Напишите уравнение окружности с центром в точке A (-2;3),проходящей через точку B (0;-3)


Ответы на вопрос

Отвечает Мергенева Ангелина.
Теорема 10.5.
Уравнение окружности ω (A; B) имеет вид (x – a)2 + (y – b)2 = R2, где a и b – координаты центра Aокружности ω (A; B)
Уравнение окружности ω (A; B) имеет вид (x – a)2 + (y – b)2 = R2, где a и b – координаты центра Aокружности ω (A; B)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Уравнение окружности с центром в точке A(-2, 3) и проходящей через точку B(0, -3) можно записать в виде:
(x - a)^2 + (y - b)^2 = r^2,
где (a, b) - координаты центра окружности, а r - радиус окружности.
В данном случае:
a = -2, b = 3.
Для нахождения радиуса r используем формулу расстояния между двумя точками:
r = √((x2 - x1)^2 + (y2 - y1)^2),
где (x1, y1) - координаты центра окружности, (x2, y2) - координаты точки, через которую проходит окружность.
В данном случае:
(x1, y1) = (-2, 3), (x2, y2) = (0, -3).
Подставляя значения в формулу, получим:
r = √((0 - (-2))^2 + (-3 - 3)^2) = √(2^2 + (-6)^2) = √(4 + 36) = √40 = 2√10.
Таким образом, уравнение окружности будет:
(x + 2)^2 + (y - 3)^2 = (2√10)^2,
(x + 2)^2 + (y - 3)^2 = 40.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili