Вопрос задан 09.03.2021 в 09:43. Предмет Геометрия. Спрашивает Андреева Виктория.

стороны некоторого прямоугольника равны 6 см и 11 см. Через концы одной из его длинных сторон

проведены биссектрисы прямых углов. на какие части делят эти биссектрисы вторую длинную сторону?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лузанова Мария.
Вторая сторона будет поделена биссектрисами углов на отрезки, длины которых равны 5 см, 1 см и 5см
***Необходимо  в прямоугольнике провести дополнительное построение двух квадратов со сторонами 6 см (за основу берём боковые стороны), затем проводим диагонали этих квадратов ( они и будут биссектрисами прямых углов).
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы определить, на какие части биссектрисы делят вторую длинную сторону прямоугольника, нам нужно найти точки их пересечения с этой стороной.

Пусть у нас есть прямоугольник со сторонами 6 см и 11 см. Проведем биссектрисы прямых углов через концы одной из длинных сторон.

Прежде всего, найдем длину второй длинной стороны. Так как прямоугольник имеет две короткие стороны (6 см) и две длинные стороны, обозначим вторую длинную сторону как "х".

Используя теорему Пифагора, мы можем найти "х": х2=11262х^2 = 11^2 - 6^2 х2=12136х^2 = 121 - 36 х2=85х^2 = 85 х=85х = \sqrt{85} (приближенно около 9.22 см)

Теперь у нас есть длина второй длинной стороны прямоугольника - примерно 9.22 см.

Чтобы найти точки пересечения биссектрис с этой стороной, мы можем применить пропорции. Обозначим точку пересечения первой биссектрисы с второй длинной стороной как "А", а точку пересечения второй биссектрисы с второй длинной стороной как "В".

Пусть расстояние от начала второй длинной стороны до точки "А" равно "а", а расстояние от точки "А" до точки "В" равно "b".

Тогда мы можем записать пропорцию: a9.22=611\frac{a}{9.22} = \frac{6}{11}

Решая эту пропорцию, мы можем найти значение "а": a=6119.22a = \frac{6}{11} \cdot 9.22 (приближенно около 5.03 см)

Теперь мы знаем, что расстояние от начала второй длинной стороны до точки "А" составляет примерно 5.03 см.

Чтобы найти значение "b", мы можем использовать следующую пропорцию: b9.22=5.039.22\frac{b}{9.22} = \frac{5.03}{9.22}

Решая эту пропорцию, мы можем найти значение "b": b=5.039.229.22b = \frac{5.03}{9.22} \cdot 9.22 (приближенно около 5.03 см)

Таким образом, биссектрисы первого у

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос