Вопрос задан 18.02.2021 в 19:14. Предмет Геометрия. Спрашивает Савостяник Альонка.

Помогите решить и как можно подробнее. Катеты прямоугольного треугольника равны 6и 8см .найдите

гипотенузу и площадь треугольника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Андреева Елизавета.
Все исходит из формулы. Теорема Пифагора)
в см если оставить не переводить c^2=a^2+b^2
отсюда просто с, т.е гипотенуза равна корень квадратный из выражения a^2+b^2=sqrt(36+64)=sqrt 100=10 cм
площадь треугольника=1/2 * основание * высоту(т.е произведение катетов пополам)
площадь равна=1/2*8*6=24 см^2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти гипотенузу прямоугольного треугольника, можно использовать теорему Пифагора, которая гласит: квадрат гипотенузы равен сумме квадратов катетов.

В данном случае катеты равны 6 см и 8 см. Применяя теорему Пифагора, получим:

гипотенуза^2 = катет1^2 + катет2^2

гипотенуза^2 = 6^2 + 8^2 гипотенуза^2 = 36 + 64 гипотенуза^2 = 100

Чтобы найти гипотенузу, возьмем квадратный корень из обеих сторон:

гипотенуза = √100 гипотенуза = 10

Таким образом, гипотенуза треугольника равна 10 см.

Для вычисления площади прямоугольного треугольника можно использовать формулу: площадь = (катет1 * катет2) / 2.

В данном случае:

площадь = (6 * 8) / 2 площадь = 48 / 2 площадь = 24

Таким образом, площадь треугольника равна 24 квадратных сантиметра.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос