Вопрос задан 17.02.2021 в 11:16. Предмет Геометрия. Спрашивает Юзик Максим.

Найдите апофему правильной четирехугольной пирамиды,если ее высота-4 см,а сторона основы-6 см

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фіда Сергій.
8 см будет . ето ответ решения написать немогу потом напишу
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Апофема правильной четырехугольной пирамиды (также называемая радиусом описанной сферы) может быть найдена с использованием формулы:

r=h2+(s2)2r = \sqrt{h^2 + \left(\frac{s}{2}\right)^2}

где: rr - апофема, hh - высота пирамиды, ss - длина стороны основания.

В данном случае, h=4h = 4 см и s=6s = 6 см. Подставим значения в формулу:

r=42+(62)2=16+9=25=5смr = \sqrt{4^2 + \left(\frac{6}{2}\right)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \, \text{см}

Таким образом, апофема правильной четырехугольной пирамиды равна 5 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос