Вопрос задан 16.06.2018 в 16:14. Предмет Геометрия. Спрашивает Кузьмина Анастасия.

В треугольнике MNK точка О серединный перпендикуляр. МО=12, угол ONK=30 найти площадь NOK. Срочно!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Проскурякова Полина.

Серединные перпендикуляры треугольника равны, следовательно их отрезки в точке пересечения
Проводим от вершин К и N перпендикуляры к точке О
Получается треугольник NOK
Угол N в этом треугольнике равен 30, следовательно и угол К тоже равен 30
Потому что отрезки перпендикуляров равны и стороны треугольника тоже
угол NOK=120
можно найти площадь треугольника NOK
умножаем боковые стороны на синус угла между ними и делим все на 2;(sin 120 = √3/2)
S=(12*12*√3/2)/2
S=144*√3/4=36√3
Ответ: 36√3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос