
Вопрос задан 16.06.2018 в 16:14.
Предмет Геометрия.
Спрашивает Кузьмина Анастасия.
В треугольнике MNK точка О серединный перпендикуляр. МО=12, угол ONK=30 найти площадь NOK. Срочно!


Ответы на вопрос

Отвечает Проскурякова Полина.
Серединные перпендикуляры треугольника равны, следовательно их отрезки в точке пересечения
Проводим от вершин К и N перпендикуляры к точке О
Получается треугольник NOK
Угол N в этом треугольнике равен 30, следовательно и угол К тоже равен 30
Потому что отрезки перпендикуляров равны и стороны треугольника тоже
угол NOK=120
можно найти площадь треугольника NOK
умножаем боковые стороны на синус угла между ними и делим все на 2;(sin 120 = √3/2)
S=(12*12*√3/2)/2
S=144*√3/4=36√3
Ответ: 36√3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili