
Вопрос задан 18.11.2020 в 08:59.
Предмет Геометрия.
Спрашивает Морозова Виктория.
Срочно нужна помощь.... желательно поподробнее расписать. Спасибо)) Окружности радиусов 27 и 54
касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Ответы на вопрос

Отвечает Негеков Миша.
R≡54,r≡27. Пусть # синвол параллельности, ↓ перпендикуляр. R ↓ ac , r ↓ ac ⇒ao2 # co1. (ao2=r , co1=R). o1,o2 ∈ m. Где m=Mo1 и M точка пересечение ac и bd. O1q ↓ cd , O2n ↓ ab. cd # ab. ( cd # n, n↓m ab # n). Значит qn расстояние между ab и cd. Угл cmo2=a ⇒ sin(a)=27/(27+x)=O2n/27 27/(27+x)=54/(108+x). Где x =LM L точка пересечение (o2;r) c m. Sin(a)=O1q/54=O2n/27. Отсюда O2n=9 O1q=18 ⇒ QK=54-18=36. QN= 36+27+9=72. Простите если непонятно писал.



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili