
Вопрос задан 31.10.2020 в 14:04.
Предмет Геометрия.
Спрашивает Денисенко Дмитрий.
Дано: ABCD – квадратНайти: PAMCK, SAMCK.



Ответы на вопрос

Отвечает Смирный Арсений.
Из рисунка видно, что AMCK - параллелограмм, поэтому AM=CK=3. Так как AB=CD и AM=CK, BM=DK=1. Таким образом, сторона квадрата равна 3+1=4. S(AMCK)=S(ABCD)-S(BMC)-S(AKD). Треугольники AKD и BMC - прямоугольные. Катеты каждого из них равны 4 (сторона квадрата) и 1. Площадь каждого из них равна половине произведения катетов и равна 4*1/2=2. Значит, суммарнная площадь равна 4. Площадь квадрата равна 4*4=16, тогда площадь параллелограмма равна 16-4=12.
Стороны AK и CM параллелограмма противоположны, поэтому AK=CM. AK - гипотенуза прямоугольного треугольника со сторонами 1 и 4, значит, по теореме Пифагора,
. Тогда периметр AMCK равенAM+MC+CK+AK=2*3+2*√17=6+2√17.
Стороны AK и CM параллелограмма противоположны, поэтому AK=CM. AK - гипотенуза прямоугольного треугольника со сторонами 1 и 4, значит, по теореме Пифагора,


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili