Вопрос задан 29.10.2020 в 14:46. Предмет Геометрия. Спрашивает Налбандян Карина.

Дана окружность с центром в точке O радиуса 15 и точка P такая, что OP=37.через точку P проведена

прямая,пересекающая окружность в точках A и B таких,что AB=18.найдите длину отрезка BP.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Штарёв Виталий.
CD - диаметр, D∈OP
OC=OD=15, OP=37, AB=18

Из точки вне окружности (P) проведены две секущие (PA, PC). Произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть (теорема о секущих).
PA*PB=PC*PD

PA=AB+BP =18+BP
PC=OC+OP =15+37 =52
PD=OP-OD =37-15 =22

(18+BP)BP=52*22 <=>
BP^2 +18BP -1144 =0 <=>
BP1,2= -9 +- √(81+1144) = 
=35-9 =26 (BP>0)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос