
Вопрос задан 12.06.2018 в 18:37.
Предмет Геометрия.
Спрашивает Дунаев Валентин.
Треугольники ADC и BDC расположены так, что точка А не лежит в плоскости BCD. Точка М - середина
отрезка AD, О — точка пересечения медиан треугольника BCD. Определите положение точки пе ресечения прямой МО с плоскостью ABC.Помогите!!! Т_Т

Ответы на вопрос

Отвечает Морсакова Ирина.
По свойству медиан точка их пересечения О делит их в отношении 2:1, считая от вершины (свойство).
Медиана из D пересекает ВС в т.Е. ВЕ=СЕ, ⇒ АЕ медиана ∆ АВС.
МО лежит в плоскости АЕD, которая пересекается с плоскостью АВС по прямой АЕ.
В ∆ АЕD точка М - середина АD, АМ=DМ, ЕО=0,5 DО, следовательно, прямые АЕ и МО не параллельны и пересекутся вне плоскости ∆ ВСD в некоторой точке К, принадлежащей плоскости АВС и лежащей на продолжении медины АЕ.



Топ вопросов за вчера в категории Геометрия

Геометрия 61

Геометрия 108

Геометрия 17

Геометрия 10

Геометрия 34

Геометрия 75

Геометрия 12

Геометрия 13
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili