Вопрос задан 12.04.2020 в 12:16. Предмет Алгебра. Спрашивает Ковшик Юля.

Доказать,что при натуральных n>=2 1/(n+1) + 1/(n+2)+...+ 1/2n >13/24С объяснением,пожалуйста.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курбанова Арина.
По индукции. Для n = 2 это верно:
1/3 + 1/4 = 7/12 = 14/24 > 13/24

Обозначим сумму в левой части за S(n). 
Пусть установлено, что S(k) > 13/24. Докажем, что S(k+1) >13/24.

S(k+1) = S(k) - 1/(k+1) + 1/(2k+1) + 1/(2k+2) = S(k) + 1/(2k+1) - 1/(2k+2) > S(k) > 13/24.

По принципу мат. индукции неравенство верно для всех n >= 2.
0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос