найдите производную ПОЖАЛУЙСТА: а)y=1/2sin2x в точке пи/4 б)y=Vx(3х+3) в)y=x/x^2-2x г)y=Vx^2+4x
V-коренОтветы на вопрос
а)y'(x)=(1/2sin2x)'=sin2x
y'(пи/4)=sin пи*2/4=sin пи/2=1
б)y=Vx(3х+3)
a=x(3х+3) a'=3x+3+3x=6x+3
b=Va b'=1/2Va
y'=(6x+3)/2Vx(3х+3)
в)y=x/x^2-2x
y'=(x^2-2x-2x^2+2x)/(x^2-2x)^2=x^2=x(x^3+4x^2-4x^3)=x/(4x^2-3x^3)
г)y=Vx^2+4x
a=x^2+4x a'=2x+4
b=Va b'=1/2Va
y'=2(x+2)/2Vx^2+4x=(x+2)/Vx^2+4x
a) y = (1/2)sin(2x) at x = π/4
To find the derivative of the function y = (1/2)sin(2x) and evaluate it at the point x = π/4, we can follow these steps:
Step 1: Apply the chain rule to differentiate the composite function. Step 2: Substitute the value of x as π/4 into the derivative expression.
Let's find the derivative of y = (1/2)sin(2x):
The derivative of sin(2x) with respect to x is cos(2x) multiplied by the derivative of the inside function (2x) with respect to x, which is 2.
dy/dx = (1/2) * cos(2x) * 2
Simplifying, we get:
dy/dx = cos(2x)
Now, let's evaluate the derivative at x = π/4:
dy/dx = cos(2 * π/4) = cos(π/2) = 0
Therefore, the derivative of y = (1/2)sin(2x) at x = π/4 is 0.
b) y = Vx(3x + 3)
To find the derivative of the function y = Vx(3x + 3), we can use the product rule. The product rule states that if we have a function of the form f(x) = u(x)v(x), where u(x) and v(x) are differentiable functions, then the derivative of f(x) is given by:
f'(x) = u'(x)v(x) + u(x)v'(x)
Let's find the derivative of y = Vx(3x + 3):
Step 1: Identify u(x) and v(x). u(x) = Vx v(x) = 3x + 3
Step 2: Find the derivative of u(x) and v(x). u'(x) = V v'(x) = 3
Step 3: Apply the product rule. y' = u'(x)v(x) + u(x)v'(x) = V(3x + 3) + Vx(3) = 3Vx + 3V + 3Vx = 6Vx + 3V
Therefore, the derivative of y = Vx(3x + 3) is 6Vx + 3V.
c) y = x/(x^2 - 2x)
To find the derivative of the function y = x/(x^2 - 2x), we can use the quotient rule. The quotient rule states that if we have a function of the form f(x) = u(x)/v(x), where u(x) and v(x) are differentiable functions, then the derivative of f(x) is given by:
f'(x) = (u'(x)v(x) - u(x)v'(x))/(v(x))^2
Let's find the derivative of y = x/(x^2 - 2x):
Step 1: Identify u(x) and v(x). u(x) = x v(x) = x^2 - 2x
Step 2: Find the derivative of u(x) and v(x). u'(x) = 1 v'(x) = 2x - 2
Step 3: Apply the quotient rule. y' = (u'(x)v(x) - u(x)v'(x))/(v(x))^2 = (1 * (x^2 - 2x) - x * (2x - 2))/(x^2 - 2x)^2 = (x^2 - 2x - 2x^2 + 2x)/(x^2 - 2x)^2 = (-x^2)/(x^2 - 2x)^2
Therefore, the derivative of y = x/(x^2 - 2x) is -x^2/(x^2 - 2x)^2.
d) y = V(x^2 + 4x + V)
To find the derivative of the function y = V(x^2 + 4x + V), we can use the power rule. The power rule states that if we have a function of the form f(x) = ax^n, where a is a constant and n is a real number, then the derivative of f(x) is given by:
f'(x) = a * n * x^(n-1)
Let's find the derivative of y = V(x^2 + 4x + V):
Step 1: Apply the power rule to each term. dy/dx = V * 2 * x^(2-1) + V * 4 * x^(1-1) + V * 1 * x^(0-1) = 2Vx + 4V + V/x
Therefore, the derivative of y = V(x^2 + 4x + V) is 2Vx + 4V + V/x.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
