
Помогите доказать тождество1) ctgt/(tgt+ctgt)=cos^2t2) (1+tgt)/(1+ctgt)=tgt


Ответы на вопрос




Proof of Identity 1: ctg(t)/(tg(t)+ctg(t)) = cos^2(t)
To prove the given identity, we can start by simplifying the left-hand side (LHS) expression and showing that it is equal to the right-hand side (RHS) expression.
Let's rewrite the LHS expression using trigonometric identities:
ctg(t) / (tg(t) + ctg(t))
Since ctg(t) is the reciprocal of tg(t), we can substitute tg(t) with 1/ctg(t) in the denominator:
ctg(t) / (1/ctg(t) + ctg(t))
Now, we need to find a common denominator for the two fractions in the denominator:
ctg(t) / ((1 + ctg^2(t)) / ctg(t))
Next, we can simplify the expression further by multiplying the numerator and denominator by ctg(t):
ctg^2(t) / (1 + ctg^2(t))
Using the Pythagorean identity sin^2(t) + cos^2(t) = 1, we can replace ctg^2(t) with 1 - cos^2(t):
(1 - cos^2(t)) / (1 + (1 - cos^2(t)))
Now, we can simplify the expression by combining like terms:
(1 - cos^2(t)) / (2 - cos^2(t))
Finally, we can simplify further by canceling out common factors:
1 - cos^2(t) = sin^2(t)
Therefore, the LHS expression is equal to sin^2(t), which is equivalent to the RHS expression. Hence, we have proved the given identity.
Proof of Identity 2: (1 + tg(t))/(1 + ctg(t)) = tg(t)
To prove the second identity, we can start by simplifying the LHS expression and showing that it is equal to the RHS expression.
Let's rewrite the LHS expression using trigonometric identities:
(1 + tg(t)) / (1 + ctg(t))
Next, we can multiply the numerator and denominator by ctg(t):
(1 + tg(t)) * ctg(t) / (1 + ctg(t)) * ctg(t)
Expanding the numerator and denominator:
(ctg(t) + tg(t) * ctg(t)) / (ctg(t) + ctg^2(t))
Using the fact that tg(t) * ctg(t) = 1, we can simplify the expression:
(ctg(t) + 1) / (ctg(t) + ctg^2(t))
Now, we can factor out ctg(t) from the denominator:
(ctg(t) + 1) / (ctg(t) * (1 + ctg(t)))
Canceling out the common factor ctg(t):
(1 + ctg(t)) / (1 + ctg(t))
The expression simplifies to 1, which is equivalent to the RHS expression. Hence, we have proved the given identity.
Therefore, both identities have been proven to be true.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili