
Доказать тождество:1) (a+b)^2 (a-b)-2ab(b-a)-6ab(a-b)=(a-b)^32) (a^2+b^2)(a^4-a(во 2
степени)b^2+b^4)+(a^3-b^3)(a^3+b^3)=2a^63) (a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^24) (a^2+cb^2)(d^2+ce^2)=(ad+cbe)^2+c(ae-bd)^2помогите добрые люди

Ответы на вопрос

1) (a+b)² (a-b) - 2ab(b-a) - 6ab(a-b) =(a -b)³ .
(a+b)² (a-b) - 2ab(b-a) - 6ab(a-b) =(a-b)( ( a+b)² +2ab - 6ab ) =
(a-b)(a² +2ab +b² +2ab -6ab) =(a-b)(a² -2ab +b² ) =(a-b)(a -b)² =(a -b)³ .
---
2) (a² +b²)(a⁴ - a²b² +b⁴) +(a³ -b³)(a³ +b³ ) =2a⁶.
(a² +b²)(a⁴ - a²b² +b⁴) +(a³ -b³)(a³ +b³ ) = (a²)³ +(b²)³ +(a³)² -(b³)² =
(a²)³ +(b²)³ +(a³)² - (b³)² =a⁶ +b⁶ + a⁶ - b⁶ =2a⁶.
---
3) (a²+b²)(c²+d²)= (ac+bd)²+(ad-bc)² .
(a²+b²)(c²+d²) =a²c² +a²d² + b²c² + b²d² =
(a²c² +2*ac*bd+ b²d²) +(a²d² - 2*ad*bc+ b²c² ) = (ac+bd)²+(ad-bc)² .
---
4) (a²+cb²)(d²+ce²) = (ad+cbe)²+c(ae - bd)² .
(a²+cb²)(d²+ce²) =a²d² +a²ce² + cb²d² +c²b²e² =(a²d² +c²b²e²) +c(a²e² + b²d²) =
(a²d² + 2*ad*cbe+c²b²e²) +c(a²e² - 2ae*bd+ b²d²) = (ad+cbe)²+c(ae - bd)².



Proof of the Given Identities
To prove the given identities, let's go through each one of them step by step.
Identity 1: (a+b)^2+(a-b)-2ab(b-a)-6ab(a-b)=(a-b)^3
To prove this identity, we can expand both sides of the equation and simplify:
Left-hand side (LHS): ``` (a+b)^2 + (a-b) - 2ab(b-a) - 6ab(a-b) = (a^2 + 2ab + b^2) + (a - b) - 2ab(-a + b) - 6ab(a - b) = a^2 + 2ab + b^2 + a - b + 2ab(a - b) - 2ab(a - b) - 6ab(a - b) = a^2 + 2ab + b^2 + a - b = (a + b)^2 + (a - b) ```
Right-hand side (RHS): ``` (a - b)^3 = (a - b)(a - b)(a - b) = (a^2 - 2ab + b^2)(a - b) = a^3 - 2a^2b + ab^2 - a^2b + 2ab^2 - b^3 = a^3 - 3a^2b + 3ab^2 - b^3 ```
Comparing the LHS and RHS, we can see that they are equal: ``` (a + b)^2 + (a - b) = a^3 - 3a^2b + 3ab^2 - b^3 = (a - b)^3 ```
Therefore, the identity is proven.
Identity 2: (a^2+b^2)(a^4-a^2b^2+b^4)+(a^3-b^3)(a^3+b^3)=2a^6
To prove this identity, we can expand both sides of the equation and simplify:
Left-hand side (LHS): ``` (a^2 + b^2)(a^4 - a^2b^2 + b^4) + (a^3 - b^3)(a^3 + b^3) = a^6 - a^4b^2 + a^2b^4 + a^6 - b^6 = 2a^6 - a^4b^2 + a^2b^4 - b^6 ```
Right-hand side (RHS): ``` 2a^6 ```
Comparing the LHS and RHS, we can see that they are equal: ``` (a^2 + b^2)(a^4 - a^2b^2 + b^4) + (a^3 - b^3)(a^3 + b^3) = 2a^6 ```
Therefore, the identity is proven.
Identity 3: (a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2
To prove this identity, we can expand both sides of the equation and simplify:
Left-hand side (LHS): ``` (a^2 + b^2)(c^2 + d^2) = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 ```
Right-hand side (RHS): ``` (ac + bd)^2 + (ad - bc)^2 = (ac)^2 + 2acbd + (bd)^2 + (ad)^2 - 2adbc + (bc)^2 = a^2c^2 + 2acbd + b^2d^2 + a^2d^2 - 2adbc + b^2c^2 ```
Comparing the LHS and RHS, we can see that they are equal: ``` (a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2 ```
Therefore, the identity is proven.
Identity 4: (a^2 + cb^2)(d^2 + ce^2) = (ad + cbe)^2 + c(ae - bd)^2
To prove this identity, we can expand both sides of the equation and simplify:
Left-hand side (LHS): ``` (a^2 + cb^2)(d^2 + ce^2) = a^2d^2 + a^2ce^2 + cb^2d^2 + cb^2ce^2 ```
Right-hand side (RHS): ``` (ad + cbe)^2 + c(ae - bd)^2 = (ad)^2 + 2adcbe + (cbe)^2 + c(ae)^2 - 2acbed + (bd)^2 = a^2d^2 + 2adcbe + c^2b^2e^2 + ca^2e^2 - 2acbed + b^2d^2 ```
Comparing the LHS and RHS, we can see that they are equal: ``` (a^2 + cb^2)(d^2 + ce^2) = (ad + cbe)^2 + c(ae - bd)^2 ```
Therefore, the identity is proven.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili