
Y=5-x^2 y=1 найдите площадь фигуры, ограниченной линией


Ответы на вопрос

x^2=5-1
x^2=4
x=2



Calculating the Area of the Figure
To find the area of the figure bounded by the given lines, we can use the definite integral to calculate the area under the curve. The given lines are y = 5 - x^2 and y = 1.
The area can be calculated using the formula: S = ∫[a, b] (f(x) - g(x)) dx
Where: - f(x) is the upper function (in this case, y = 5 - x^2) - g(x) is the lower function (in this case, y = 1) - a and b are the x-values where the two functions intersect
Calculating the Intersection Points
To find the intersection points, we need to solve the system of equations formed by the two given lines: y = 5 - x^2 and y = 1.
By setting the two equations equal to each other, we can find the x-values where the lines intersect.
5 - x^2 = 1
Solving for x: x^2 = 4 x = ±2
So, the intersection points are at x = -2 and x = 2.
Calculating the Area
Now, we can calculate the area using the definite integral: S = ∫[-2, 2] (5 - x^2 - 1) dx
This simplifies to: S = ∫[-2, 2] (4 - x^2) dx
Integrating with respect to x: S = [4x - (x^3)/3] |[-2, 2]
Substituting the limits of integration: S = [8 - (8/3)] - [-8 + (8/3)] S = (24/3) - (-24/3) S = 48/3 S = 16
So, the area of the figure bounded by the given lines is 16 square units.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili