 
Sin(2arcsin1/3)+cos(arctg 2 корень из 3) С решением пожалуйста
 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
            Calculating Trigonometric Expressions
To solve the expression sin(2arcsin(1/3)) + cos(arctan(2) + √3), we can follow these steps:
1. Find the Values of the Inner Trigonometric Functions: - First, we need to find the values of the inner trigonometric functions, i.e., arcsin(1/3) and arctan(2).
2. Use Trigonometric Identities to Simplify the Expression: - Once we have the values of the inner functions, we can use trigonometric identities to simplify the expression.
3. Calculate the Final Result: - Finally, we can calculate the final result using the simplified expression.
Let's proceed with these steps.
Step 1: Find the Values of the Inner Trigonometric Functions
1. arcsin(1/3): - The arcsin function (also denoted as sin^(-1)) gives the angle whose sine is the given value. In this case, arcsin(1/3) is the angle whose sine is 1/3. - The value of arcsin(1/3) is approximately 0.3398 radians or 19.47 degrees [[1]].
2. arctan(2): - The arctan function (also denoted as tan^(-1)) gives the angle whose tangent is the given value. In this case, arctan(2) is the angle whose tangent is 2. - The value of arctan(2) is approximately 1.1071 radians or 63.43 degrees [[2]].
Step 2: Use Trigonometric Identities to Simplify the Expression
Now that we have the values of arcsin(1/3) and arctan(2), we can use trigonometric identities to simplify the expression.
1. sin(2arcsin(1/3)): - Using the double angle identity for sine, sin(2x) = 2sin(x)cos(x), we can simplify sin(2arcsin(1/3)) as follows: - sin(2arcsin(1/3)) = 2 * sin(arcsin(1/3)) * cos(arcsin(1/3)) - sin(2arcsin(1/3)) = 2 * (1/3) * √(1 - (1/3)^2) (using the Pythagorean identity sin^2(x) + cos^2(x) = 1) - sin(2arcsin(1/3)) = 2/3 * √(8/9) - sin(2arcsin(1/3)) = 2√2/3
2. cos(arctan(2) + √3): - We can directly calculate the value of cos(arctan(2) + √3) using the given angle.
Step 3: Calculate the Final Result
Now that we have simplified the expression, we can calculate the final result.
Final Result: - sin(2arcsin(1/3)) + cos(arctan(2) + √3) = 2√2/3 + cos(arctan(2) + √3)
This is the simplified expression for the given trigonometric expression. If you need further assistance in calculating the value of cos(arctan(2) + √3), please let me know!
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			