
Sin(2arcsin1/3)+cos(arctg 2 корень из 3) С решением пожалуйста


Ответы на вопрос




Calculating Trigonometric Expressions
To solve the expression sin(2arcsin(1/3)) + cos(arctan(2) + √3), we can follow these steps:
1. Find the Values of the Inner Trigonometric Functions: - First, we need to find the values of the inner trigonometric functions, i.e., arcsin(1/3) and arctan(2).
2. Use Trigonometric Identities to Simplify the Expression: - Once we have the values of the inner functions, we can use trigonometric identities to simplify the expression.
3. Calculate the Final Result: - Finally, we can calculate the final result using the simplified expression.
Let's proceed with these steps.
Step 1: Find the Values of the Inner Trigonometric Functions
1. arcsin(1/3): - The arcsin function (also denoted as sin^(-1)) gives the angle whose sine is the given value. In this case, arcsin(1/3) is the angle whose sine is 1/3. - The value of arcsin(1/3) is approximately 0.3398 radians or 19.47 degrees [[1]].
2. arctan(2): - The arctan function (also denoted as tan^(-1)) gives the angle whose tangent is the given value. In this case, arctan(2) is the angle whose tangent is 2. - The value of arctan(2) is approximately 1.1071 radians or 63.43 degrees [[2]].
Step 2: Use Trigonometric Identities to Simplify the Expression
Now that we have the values of arcsin(1/3) and arctan(2), we can use trigonometric identities to simplify the expression.
1. sin(2arcsin(1/3)): - Using the double angle identity for sine, sin(2x) = 2sin(x)cos(x), we can simplify sin(2arcsin(1/3)) as follows: - sin(2arcsin(1/3)) = 2 * sin(arcsin(1/3)) * cos(arcsin(1/3)) - sin(2arcsin(1/3)) = 2 * (1/3) * √(1 - (1/3)^2) (using the Pythagorean identity sin^2(x) + cos^2(x) = 1) - sin(2arcsin(1/3)) = 2/3 * √(8/9) - sin(2arcsin(1/3)) = 2√2/3
2. cos(arctan(2) + √3): - We can directly calculate the value of cos(arctan(2) + √3) using the given angle.
Step 3: Calculate the Final Result
Now that we have simplified the expression, we can calculate the final result.
Final Result: - sin(2arcsin(1/3)) + cos(arctan(2) + √3) = 2√2/3 + cos(arctan(2) + √3)
This is the simplified expression for the given trigonometric expression. If you need further assistance in calculating the value of cos(arctan(2) + √3), please let me know!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili