
Sin (pi/6-x)-cos(pi/3+x) Как решить ? по какой формуле ... ? спасибо


Ответы на вопрос

=1/2*cosx-√3/2*sinx-1/2*cosx+√3/2*sinx=0



sin(π/6 -x) - cos(π/3 +x) =sin( π/2 - ( π/3 +x) ) - cos(π/3 +x) =
cos(π/3 +x) - cos(π/3 +x) =0.
------
sin( π/2 - α) =cosα .



Solving the Equation sin(pi/6-x) - cos(pi/3+x)
To solve the equation sin(pi/6-x) - cos(pi/3+x), we can use trigonometric identities and properties to simplify the expression and find the solution.
Let's break down the steps to solve the equation:
Step 1: Simplify the expression using trigonometric identities. Step 2: Apply the properties of trigonometric functions to find the solution.
Let's go through each step in detail.
Step 1: Simplify the expression using trigonometric identities
We can start by using the trigonometric identities to simplify the expression.
Using the identity sin(a-b) = sin(a)cos(b) - cos(a)sin(b), we can rewrite the equation as:
sin(pi/6)cos(x) - cos(pi/6)sin(x) - cos(pi/3)cos(x) - sin(pi/3)sin(x)
Now, let's simplify further.
Using the values of sin(pi/6) = 1/2, cos(pi/6) = sqrt(3)/2, sin(pi/3) = sqrt(3)/2, and cos(pi/3) = 1/2, we can substitute these values into the equation:
(1/2)cos(x) - (sqrt(3)/2)sin(x) - (1/2)cos(x) - (sqrt(3)/2)sin(x)
Simplifying this further, we get:
-cos(x)sin(x) - sqrt(3)/2(sin(x) + cos(x))
Step 2: Apply the properties of trigonometric functions to find the solution
To find the solution, we can set the expression equal to zero and solve for x:
-cos(x)sin(x) - sqrt(3)/2(sin(x) + cos(x)) = 0
Now, let's solve for x.
We can factor out sin(x) from the expression:
sin(x)(-cos(x) - sqrt(3)/2) - sqrt(3)/2(cos(x)) = 0
Next, we can factor out cos(x) from the expression:
(-cos(x) - sqrt(3)/2)(sin(x) + sqrt(3)/2) = 0
To find the values of x that satisfy this equation, we can set each factor equal to zero and solve for x:
1. Setting -cos(x) - sqrt(3)/2 = 0: - cos(x) = -sqrt(3)/2 - Taking the inverse cosine of both sides, we get: - x = arccos(-sqrt(3)/2)
2. Setting sin(x) + sqrt(3)/2 = 0: - sin(x) = -sqrt(3)/2 - Taking the inverse sine of both sides, we get: - x = arcsin(-sqrt(3)/2)
Therefore, the solutions to the equation sin(pi/6-x) - cos(pi/3+x) are:
- x = arccos(-sqrt(3)/2) - x = arcsin(-sqrt(3)/2)
Please note that these solutions are approximate values and can be expressed in radians or degrees, depending on the context.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili