Вопрос задан 17.02.2019 в 06:19. Предмет Алгебра. Спрашивает Коваленко Анастасия.

Решите пажалуйста алшгебра

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пряничникова Даша.
Что решить то? Ничего же нет.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Algebraic Equations

To solve the algebraic equations you provided, let's break them down one by one.

1. Equation 1: - Equation: ^4 - ^3 - 5^2 - - 6 < 0 - To solve this equation, we need more information. The equation seems to be incomplete or missing some terms. Could you please provide the complete equation?

2. Equation 2: - Equation: x^2 + y^2 = 20 - Equation: 3x + y = 2 - To solve this system of equations, we can use the substitution method or the elimination method. Let's use the substitution method: - From the second equation, we can express y in terms of x: y = 2 - 3x. - Substituting this value of y into the first equation, we get: x^2 + (2 - 3x)^2 = 20. - Simplifying the equation, we have: 10x^2 - 12x - 16 = 0. - Solving this quadratic equation, we find two solutions for x: x1 = -0.8 and x2 = 2. - Substituting these values of x back into the second equation, we can find the corresponding values of y: y1 = 4.4 and y2 = -4. - Therefore, the solutions to the system of equations are: - Solution 1: x1 = -0.8, y1 = 4.4 - Solution 2: x2 = 2, y2 = -4.

3. Equation 3: - Equation: xy - 3y^2 = -24 - Equation: xy + 2y^2 = 21 - To solve this system of equations, we can use the elimination method. Let's subtract the second equation from the first equation: - (xy - 3y^2) - (xy + 2y^2) = (-24) - 21 - Simplifying the equation, we have: -5y^2 = -45 - Solving for y^2, we find: y^2 = 9 - Taking the square root of both sides, we get two solutions for y: y1 = -3 and y2 = 3. - Substituting these values of y back into the second equation, we can find the corresponding values of x: x1 = -9 and x2 = 8 1/3. - Therefore, the solutions to the system of equations are: - Solution 1: x1 = -9, y1 = -3 - Solution 2: x2 = 8 1/3, y2 = 3.

4. Equation 4: - Equation: (60/x) + 1 = 60/(x-2) - To solve this equation, we can simplify it by multiplying both sides by x(x-2) to eliminate the denominators: - 60(x-2) + x(x-2) = 60x - Simplifying the equation, we have: x^2 - 2x - 120 = 0 - Factoring the quadratic equation, we find: (x-12)(x+10) = 0 - Solving for x, we get two solutions: x1 = 12 and x2 = -10. - Therefore, the solutions to the equation are: - Solution 1: x1 = 12 - Solution 2: x2 = -10.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос