
Sin7xsin4x-sin9xsin6x=0Срочно помогите!!!;


Ответы на вопрос





Solving the Trigonometric Equation
To solve the trigonometric equation sin(7x)sin(4x) - sin(9x)sin(6x) = 0, we can use trigonometric identities and properties to simplify the equation and find the values of x that satisfy it.
Trigonometric Identities and Properties
We can start by using the product-to-sum identities, which state that sin(A)sin(B) = (1/2)[cos(A-B) - cos(A+B)]. Applying this identity to the given equation, we get:
sin(7x)sin(4x) - sin(9x)sin(6x) = 0 => (1/2)[cos(7x-4x) - cos(7x+4x)] - (1/2)[cos(9x-6x) - cos(9x+6x)] = 0 => (1/2)[cos(3x) - cos(11x)] - (1/2)[cos(3x) - cos(15x)] = 0 => (1/2)[cos(3x) - cos(11x) - cos(3x) + cos(15x)] = 0 => (1/2)[-cos(11x) + cos(15x)] = 0 => -cos(11x) + cos(15x) = 0 => cos(15x) = cos(11x)
Finding the Solutions
Using the identity cos(A) = cos(B), we know that either A = B + 2πn or A = -B + 2πn, where n is an integer.
So, we have two cases to consider: 1. 15x = 11x + 2πn 2. 15x = -11x + 2πn
Solving for x in each case will give us the solutions to the original equation.
Let's proceed with solving these equations to find the values of x that satisfy the given trigonometric equation.
I hope this helps! If you have any further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili