
Постройте график функции y=(x^2-3x)/3-x и определите при каких значениях m прямая y=m не имеет
общих точек с графиком????

Ответы на вопрос









Graph of the Function y=(x^2-3x)/3-x
To determine the values of \( m \) for which the line \( y=m \) does not intersect the graph of the function \( y=\frac{x^2-3x}{3}-x \), we can analyze the properties of the function and the line.
The function \( y=\frac{x^2-3x}{3}-x \) can be rewritten as \( y=\frac{1}{3}x^2-x \).
The graph of the function \( y=\frac{1}{3}x^2-x \) is a parabola. To find the values of \( m \) for which the line \( y=m \) does not intersect the graph, we need to find the discriminant of the quadratic equation formed by setting the function equal to \( m \) and then analyze the discriminant.
Discriminant Analysis
The discriminant of a quadratic equation \( ax^2+bx+c=0 \) is given by the formula \( D=b^2-4ac \). When the discriminant is negative, the quadratic equation has no real roots, which means the line does not intersect the graph of the function.
For the function \( y=\frac{1}{3}x^2-x \), the discriminant is \( D=(-1)^2-4\left(\frac{1}{3}\right)(-m) \).
Determining the Values of m
To find the values of \( m \) for which the line \( y=m \) does not intersect the graph of the function, we need to solve the inequality \( D<0 \).
Substituting the discriminant into the inequality, we get \( (-1)^2-4\left(\frac{1}{3}\right)(-m)<0 \).
Solving this inequality will give us the range of values for \( m \) for which the line \( y=m \) does not intersect the graph of the function.
Conclusion
By solving the inequality \( (-1)^2-4\left(\frac{1}{3}\right)(-m)<0 \), we can determine the values of \( m \) for which the line \( y=m \) does not intersect the graph of the function \( y=\frac{1}{3}x^2-x \).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili