
4×sin2a=(1-cos4a)×(ctga+tga)


Ответы на вопрос

Ответ: x≠{pi*n/2}, n∈Z.



To solve the trigonometric equation 4×sin^2(a) = (1-cos^4(a))×(cot(a)+tan(a)), we'll first manipulate the right-hand side of the equation using trigonometric identities and then solve for the variable "a."
Step 1: Trigonometric identities Recall the following trigonometric identities:
- sin^2(a) = 1 - cos^2(a)
- cot(a) = 1/tan(a)
Step 2: Substitute the identities Replace sin^2(a) and cot(a) with the corresponding identities: 4×(1 - cos^2(a)) = (1 - cos^4(a)) × (1/tan(a) + tan(a))
Step 3: Convert tan(a) to sin(a)/cos(a) Replace tan(a) with sin(a)/cos(a): 4×(1 - cos^2(a)) = (1 - cos^4(a)) × (1/(sin(a)/cos(a)) + sin(a)/cos(a))
Step 4: Simplify the right-hand side To add fractions, find a common denominator, which is cos(a): 4×(1 - cos^2(a)) = (1 - cos^4(a)) × ((cos(a))/(sin(a)) + (sin(a)×cos(a))/(cos(a)))
Step 5: More simplification Now, simplify further: 4×(1 - cos^2(a)) = (1 - cos^4(a)) × ((cos(a) + sin^2(a))/(sin(a)))
Step 6: Replace 1 - cos^2(a) with sin^2(a) Use the identity 1 - cos^2(a) = sin^2(a): 4×sin^2(a) = (1 - cos^4(a)) × ((cos(a) + sin^2(a))/(sin(a)))
Step 7: Cancel out sin(a) from the right-hand side Cancel out sin(a) from the denominator and the sin^2(a) term in the numerator: 4×sin^2(a) = (1 - cos^4(a)) × (cos(a) + sin(a))
Step 8: Expand the right-hand side Use the distributive property to expand the right-hand side: 4×sin^2(a) = cos(a) - cos^5(a) + sin(a) - sin(a)×cos^4(a)
Step 9: Move all terms to one side of the equation Now, move all terms to one side of the equation: 4×sin^2(a) - cos(a) + cos^5(a) - sin(a) + sin(a)×cos^4(a) = 0
Step 10: Combine like terms Combine the terms with sin(a) and simplify: 4×sin^2(a) - cos(a) + cos^5(a) + sin(a)×(1 - cos^4(a)) = 0
Step 11: Use the identity sin^2(a) + cos^2(a) = 1 Replace sin^2(a) in terms of cos^2(a) using the identity sin^2(a) = 1 - cos^2(a): 4×(1 - cos^2(a)) - cos(a) + cos^5(a) + sin(a)×(1 - cos^4(a)) = 0
Step 12: Replace sin(a) with √(1 - cos^2(a)) Use the identity sin(a) = √(1 - cos^2(a)): 4×(1 - cos^2(a)) - cos(a) + cos^5(a) + √(1 - cos^2(a))×(1 - cos^4(a)) = 0
At this point, we have a trigonometric equation involving cos(a) and its powers. To find the values of "a" that satisfy this equation, we can use numerical methods or a graphing calculator. Unfortunately, the equation is quite complex, and an exact analytical solution may not be feasible.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili