
Sin 2x* tgx +1 = 3 sinx


Ответы на вопрос

Ответ:
решение и ответ на фото





To solve the equation sin(2x) * tan(x) + 1 = 3sin(x), we can apply some trigonometric identities and algebraic manipulations.
First, let's simplify the equation using the double angle formula for sine (sin(2x) = 2sin(x)cos(x)) and the identity for tangent (tan(x) = sin(x) / cos(x)):
2sin(x)cos(x) * (sin(x) / cos(x)) + 1 = 3sin(x)
Next, cancel out the common factors of cos(x):
2sin(x) * sin(x) + 1 = 3sin(x)
Simplify further:
2sin^2(x) + 1 = 3sin(x)
Rearrange the terms to form a quadratic equation:
2sin^2(x) - 3sin(x) + 1 = 0
Now, let's solve this quadratic equation. We can use factoring, completing the square, or the quadratic formula. In this case, factoring might not be straightforward, so let's use the quadratic formula:
sin(x) = (-b ± √(b^2 - 4ac)) / (2a)
Here, a = 2, b = -3, and c = 1. Substituting these values:
sin(x) = (-(-3) ± √((-3)^2 - 4 * 2 * 1)) / (2 * 2) sin(x) = (3 ± √(9 - 8)) / 4 sin(x) = (3 ± √1) / 4 sin(x) = (3 ± 1) / 4
This gives us two possibilities:
- sin(x) = (3 + 1) / 4 = 4 / 4 = 1
- sin(x) = (3 - 1) / 4 = 2 / 4 = 1/2
Let's solve for x in each case:
- sin(x) = 1
Since sin(x) equals 1, this occurs when x = π/2 + 2πn, where n is an integer.
- sin(x) = 1/2
This occurs when x = π/6 + 2πn or x = 5π/6 + 2πn, where n is an integer.
Therefore, the solutions to the equation sin(2x) * tan(x) + 1 = 3sin(x) are:
x = π/2 + 2πn, π/6 + 2πn, or 5π/6 + 2πn, where n is an integer.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili