
Sin^2x+sinxsin(3п/2-x)-cos2x=1


Ответы на вопрос

sin²x-sinxcosx-cos²x+sin²x-sin²x-cos²x=0
sin²x-sinxcosx-2cos²x=0/cos²x
tg²x-tgx-2=0
tgx=a
a²-a-2=0
a1+a2=1 U a1*a2=-2
a1=-1⇒tgx=-1⇒x=-π/4+πk,k∈z
a2=2⇒tgx=2⇒x=arctg2+πk,k∈z



Cos^2x-sinxcosx=sin^2x+cos^2x
sin^2x+sinxcosx=0
sinx(sinx+cosx)=0
sinx=0
x=Пk k=-3 x=-3П
k=-2 x=-2П
sinx=-cosx
tgx=-1
x=-П/4+Пk
k=-2
x=-9П/4



Let's simplify the left-hand side of the equation:
sin^2x + sinxsin(3π/2 - x) - cos2x
Using the identity sin(π/2 - x) = cos(x), we can rewrite sin(3π/2 - x) as cos(x):
sin^2x + sinxcosx - cos2x
Using the identity cos2x = cos^2x - sin^2x, we can rewrite cos2x as:
cos^2x - sin^2x - sinxcosx
Now we have:
sin^2x + sinxcosx - cos^2x + sin^2x + sinxcosx = 1
Using the identity sin^2x + cos^2x = 1, we can simplify further:
2sin^2x + 2sinxcosx = 1
Using the identity 2sinxcosx = sin2x, we get:
2sin^2x + sin2x = 1
Now we can rearrange the terms:
2sin^2x + sin2x - 1 = 0
This is a quadratic equation in sinx. We can solve for sinx using the quadratic formula:
sinx = (-b ± sqrt(b^2 - 4ac)) / 2a
where a = 2, b = 1, and c = -1. Substituting these values, we get:
sinx = (-1 ± sqrt(1 + 8)) / 4
sinx = (-1 ± sqrt(9)) / 4
We have two solutions:
sinx = 1 or sinx = -1/2
To check these solutions, we can substitute them back into the original equation:
For sinx = 1:
sin^2x + sinxsin(3π/2 - x) - cos2x = 1
1 + sin(3π/2 - x) - cos2x = 1
Using the identity sin(π/2 - x) = cos(x), we get:
1 + cosx - cos2x = 1
Using the identity cos2x = cos^2x - sin^2x, we get:
1 + cosx - (cos^2x - sin^2x) = 1
Simplifying, we get:
sin^2x + cosx = 0
This is not true for sinx = 1, so this solution is not valid.
For sinx = -1/2:
sin^2x + sinxsin(3π/2 - x) - cos2x = 1
(1/4) - (1/2)cosx - cos2x = 1
Using the identity cos2x = cos^2x - sin^2x, we get:
(1/4) - (1/2)cosx - (cos^2x - 1 + cos^2x) = 1
Simplifying, we get:
2cos^2x + cosx - 5/4 = 0
Using the quadratic formula again, we get:
cosx = (-1 ± sqrt(1 + 40)) / 4
cosx = (-1 ± sqrt(41)) / 4
We have two solutions:
cosx ≈ 0.882 or cosx ≈ -1.132
Substituting these values back into the original equation, we can verify that cosx ≈ 0.882 is a valid solution, but cosx ≈ -1.132 is not.
Therefore, the only valid solution is


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili