
2log2*(x-2)+log0,5*(x-3)>2


Ответы на вопрос

x>3+2log2(5) (двва после log - маленькая)



The given inequality can be rewritten using logarithmic rules as:
2log2(x-2) + log0.5(x-3) > 2
Now we can use the properties of logarithms to simplify the equation. Recall that:
- loga(b) + loga(c) = loga(bc)
- loga(b) - loga(c) = loga(b/c)
- loga(b^c) = cloga(b)
Using these properties, we can simplify the left-hand side of the inequality as follows:
2log2(x-2) + log0.5(x-3) = log2[(x-2)^2] + log0.5(x-3) [using the first property] = log2[(x-2)^2 * 0.5(x-3)] [using the second property] = log2[(x-2)^2 * (x-3)/2]
Now the inequality becomes:
log2[(x-2)^2 * (x-3)/2] > 2
Using the definition of logarithms, we can rewrite this as:
2^(log2[(x-2)^2 * (x-3)/2]) > 2^2
Simplifying the left-hand side using the third logarithmic property, we get:
(x-2)^2 * (x-3)/2 > 4
Multiplying both sides by 2 to eliminate the fraction, we get:
(x-2)^2 * (x-3) > 8
Expanding the left-hand side, we get:
x^3 - 7x^2 + 16x - 12 > 0
Now we need to find the values of x that satisfy this inequality. We can use a sign chart to do this:
markdown x x^3 - 7x^2 + 16x - 12
---------------------------------
-inf -
2-1.28 +
1.28-3 -
3-2 +
2 -
2+inf +
The inequality is satisfied when x < 1.28 or x > 3. Therefore, the solution to the original inequality is:
x < 1.28 or x > 3



The inequality can be rewritten using logarithm rules:
2log2*(x-2)+log0.5*(x-3) > 2
log2[(x-2)^2] + log0.5(x-3) > 2
log2[(x-2)^2 * 0.5(x-3)] > 2
Now we can rewrite the logarithmic inequality as an exponential inequality:
2[(x-2)^2 * 0.5(x-3)] > 2^2
(x-2)^2 * 0.5(x-3) > 2
Multiplying both sides by 2 to get rid of the fraction:
(x-2)^2 * (x-3) > 4
Expanding the left side:
x^3 - 7x^2 + 16x - 12 > 0
Now we can solve the inequality by finding the roots of the polynomial and testing the sign of each interval between the roots:
(x-2)(x-2)(x-4) > 0
The roots are x = 2, x = 2, and x = 4. We have a repeated root at x=2.
Testing the sign of each interval:
Interval (-∞, 2):
Choose x=-1, then x^3 - 7x^2 + 16x - 12 = -30, which is negative.
Interval (2, 4):
Choose x=3, then x^3 - 7x^2 + 16x - 12 = 10, which is positive.
Interval (4, ∞):
Choose x=5, then x^3 - 7x^2 + 16x - 12 = 18, which is positive.
Therefore, the solution to the inequality is:
x < 2 or x > 4.
Note that x=2 is not included in the solution since it would make the logarithm undefined.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili