
| sin x + cos x |< √ 2/2


Ответы на вопрос

Ответ на картинке внизу страницы




Let's start by looking at the different cases when the inequality could hold:
Case 1: sin x + cos x > 0 If sin x + cos x > 0, then |sin x + cos x| = sin x + cos x, and we can square both sides of the inequality to get:
(sin x + cos x)^2 < 2/2
Simplifying this, we get:
sin^2 x + 2 sin x cos x + cos^2 x < 1
Using the identity sin^2 x + cos^2 x = 1, we can simplify further:
2 sin x cos x < 0
This inequality holds when sin x and cos x have opposite signs, which means that x is in the second or fourth quadrant. Therefore, the inequality holds for x in the interval [3π/4, 5π/4].
Case 2: sin x + cos x < 0 If sin x + cos x < 0, then |sin x + cos x| = -(sin x + cos x), and we can square both sides of the inequality to get:
(sin x + cos x)^2 < 2/2
Simplifying this, we get:
sin^2 x + 2 sin x cos x + cos^2 x < 1
Using the identity sin^2 x + cos^2 x = 1, we can simplify further:
2 sin x cos x > 0
This inequality holds when sin x and cos x have the same sign, which means that x is in the first or third quadrant. Therefore, the inequality holds for x in the interval [π/4, 3π/4] or [5π/4, 7π/4].
Combining both cases, we get that the inequality holds for x in the intervals [3π/4, 5π/4] or [π/4, 3π/4] or [5π/4, 7π/4].


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili