 
Sin^2x-2sinx*cosx=3cos^2x
 0
        0
         0
        0
    Ответы на вопрос
 
        ОДЗ: x э R
tg^2x-2tgx-3=0
tgx=t
t^2-2t-3=0
D=16>0( 2 рдк)
t1=3 t2= -1
tgx=3 или tgx= -1
х=arctg3+Пn; n э Z x= -П/4+Пn; n э Z
 0
                    0
                     0
                    0
                 
            To solve the equation sin^2x - 2sinx*cosx = 3cos^2x, we can use some trigonometric identities to simplify it.
Let's start by using the identity sin^2x + cos^2x = 1. By rearranging this identity, we get sin^2x = 1 - cos^2x.
Substituting this into the equation, we have:
(1 - cos^2x) - 2sinx*cosx = 3cos^2x
Expanding and rearranging the equation, we get:
1 - cos^2x - 2sinx*cosx - 3cos^2x = 0
Now, let's combine like terms:
-4cos^2x - 2sinx*cosx + 1 = 0
To simplify further, we can use the identity sin(2x) = 2sinx*cosx:
-4cos^2x - sin(2x) + 1 = 0
This is a quadratic equation in terms of cosx. Let's solve it by factoring or using the quadratic formula. To do that, we rewrite it as:
-4cos^2x - sin(2x) + 1 = -4cos^2x - 2sinxcosx + 1cos^2x + sin^2x
Combining the terms:
(-3cos^2x - 2sinxcosx + sin^2x) + (cos^2x + sin^2x) = 0
Using the identity cos^2x + sin^2x = 1:
(-3cos^2x - 2sinxcosx + sin^2x) + 1 = 0
Now the equation becomes:
-3cos^2x - 2sinxcosx + sin^2x + 1 = 0
The equation can be further simplified as:
(sin^2x - 2sinxcosx + cos^2x) - 4cos^2x + 1 = 0
Using the identity sin^2x - 2sinxcosx + cos^2x = 1:
1 - 4cos^2x + 1 = 0
Simplifying, we get:
-4cos^2x + 2 = 0
Dividing by -2:
2cos^2x - 1 = 0
Now, we have a quadratic equation in terms of cosx. Let's solve it by factoring or using the quadratic formula:
(2cosx - 1)(cosx + 1) = 0
Setting each factor equal to zero:
2cosx - 1 = 0 or cosx + 1 = 0
Solving for cosx in the first equation:
2cosx = 1 cosx = 1/2
Taking the inverse cosine (cos^(-1)) of both sides:
x = cos^(-1)(1/2)
x = π/3 + 2πn or x = -π/3 + 2πn (where n is an integer)
Solving for cosx in the second equation:
cosx = -1
Taking the inverse cosine of both sides:
x = cos^(-1)(-1)
x = π + 2πn (where n is an integer)
Therefore, the solutions for the equation sin^2x - 2sinx*cosx = 3cos^2x are:
x = π/3 + 2πn, -π/3 + 2
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			