
1)arccos(-1)-arccos 1/2 -3 arccos(- √3/2) 2)2сos t=1 3)-2cos t=0 4)cos (arcctg √3) 5)arcctg (ctg
2П/3) 6)ctg x=-0,5 7)ctg x=0

Ответы на вопрос

============== 2 ==============
============== 4 ==============
============== 5 ==============
============== 6 ==============



Let's solve each of the given trigonometric equations and expressions step by step:
- arccos(-1) - arccos(1/2) - 3arccos(-√3/2): arccos(-1) = π arccos(1/2) = π/3 arccos(-√3/2) = 2π/3
Substituting these values: π - π/3 - 3(2π/3) = π - π/3 - 2π = -π - π/3 = -4π/3
Therefore, arccos(-1) - arccos(1/2) - 3arccos(-√3/2) simplifies to -4π/3.
- 2cos(t) = 1: Dividing both sides by 2: cos(t) = 1/2
The solutions for this equation occur at angles where the cosine value is 1/2. The standard angles where the cosine is positive 1/2 are π/3 and 5π/3. Adding the period of cosine, we can generalize the solutions as: t = π/3 + 2πn, where n is an integer.
- -2cos(t) = 0: Dividing both sides by -2: cos(t) = 0
The solutions for this equation occur at angles where the cosine value is 0. The standard angles where the cosine is 0 are π/2 and 3π/2. Adding the period of cosine, we can generalize the solutions as: t = π/2 + πn, where n is an integer.
- cos(arcctg(√3)): arcctg(√3) = π/6 (inverse cotangent of √3)
cos(π/6) = √3/2
Therefore, cos(arcctg(√3)) simplifies to √3/2.
- arcctg(ctg(2π/3)): ctg(2π/3) = -1/√3 (cotangent of 2π/3)
arcctg(-1/√3) = 5π/6 (inverse cotangent of -1/√3)
Therefore, arcctg(ctg(2π/3)) simplifies to 5π/6.
ctg(x) = -0.5: To find x, we need to find the angle whose cotangent is -0.5. The standard angle where the cotangent is -0.5 is 7π/6. Adding the period of cotangent, we can generalize the solutions as: x = 7π/6 + πn, where n is an integer.
ctg(x) = 0: To find x, we need to find the angle whose cotangent is 0. The standard angle where the cotangent is 0 is π/2. Adding the period of cotangent, we can generalize the solutions as: x = π/2 + πn, where n is an integer.
Please note that the values of angles given in radians.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili