
за два дня магазин продал пять восьмых тонны лука,причём в первый день-три пятых тонны.В каокй из
дней магазин продал больше лука?На сколько?

Ответы на вопрос

Давайте разберемся. По условию задачи, за два дня магазин продал 5/8 тонны лука. В первый день продано 3/5 тонны. Давайте найдем, сколько лука было продано во второй день.
Обозначим количество лука, проданного во второй день, как \( x \) (в тоннах). Тогда у нас есть следующее уравнение:
\[\frac{3}{5} + x = \frac{5}{8}.\]
Для начала найдем общий знаменатель, который равен 40. Умножим каждую долю на 8:
\[8 \cdot \frac{3}{5} + 8 \cdot x = 8 \cdot \frac{5}{8}.\]
Это упрощается до:
\[ \frac{24}{5} + 8x = 5.\]
Теперь выразим \(x\):
\[8x = 5 - \frac{24}{5}.\]
Упростим дробь в правой части:
\[8x = \frac{25}{5} - \frac{24}{5} = \frac{1}{5}.\]
Теперь делим обе стороны на 8:
\[x = \frac{1}{40}.\]
Таким образом, во второй день магазин продал \( \frac{1}{40} \) тонны лука.
Теперь сравним количество лука, проданного в каждый из дней. В первый день было продано \( \frac{3}{5} \) тонны, а во второй день \( \frac{1}{40} \) тонны. Чтобы определить, в какой из дней было продано больше, нужно сравнить эти значения.
Приведем обе доли к общему знаменателю 40:
\[\frac{3}{5} = \frac{24}{40}, \quad \frac{1}{40} = \frac{1}{40}.\]
Теперь видно, что \( \frac{24}{40} > \frac{1}{40} \). Таким образом, в первый день магазин продал больше лука, и разница составляет \( \frac{24}{40} - \frac{1}{40} = \frac{23}{40} \) тонны.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili