Вопрос задан 05.09.2020 в 05:37. Предмет Математика. Спрашивает Кот Нюта.

Назовем натуральное число интересным, если для любого натурального k < 8 либо оно само делится

на k, либо в нем можно переставить цифры так, что получившееся число будет делиться на k. Найдите наименьшее интересное число.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для поиска наименьшего интересного числа нужно найти число, которое удовлетворяет условиям задачи. Давайте приступим к поиску.

По условию, число должно быть таким, чтобы для любого натурального \( k < 8 \) либо оно само делится на \( k \), либо можно переставить его цифры так, чтобы получившееся число делилось на \( k \).

Рассмотрим числа от 1 и выше, чтобы найти наименьшее число, удовлетворяющее условиям. Начнем с числа 1:

1 не подходит, так как нам нужно число, которое либо делится на \( k \), либо может быть переставлено так, чтобы делиться на \( k \), для всех \( k < 8 \).

Попробуем число 12:

12 не делится на 2 (так как нечетное), но можно переставить его цифры и получить 21, которое делится на 7.

Мы нашли число, которое удовлетворяет условиям задачи: 12. Но чтобы удостовериться, что это наименьшее такое число, давайте проверим меньшие числа.

Попробуем 12 делить на 3, 4, 5 и 6:

12 не делится на 3.

12 не делится на 4.

12 не делится на 5.

12 не делится на 6.

Таким образом, минимальное число, удовлетворяющее условиям задачи, - это 12.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос