Вопрос задан 02.09.2020 в 07:16. Предмет Математика. Спрашивает Муродова Аня.

Найти диаметр шара, если объём равен 48* п/3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам решить эту задачу.

Для того, чтобы найти диаметр шара, нужно сначала найти его радиус. Радиус шара можно найти по формуле:

$$V = \frac{4}{3}\pi r^3$$

где $V$ - объем шара, а $r$ - радиус шара. Из этой формулы можно выразить радиус через объем:

$$r = \sqrt[3]{\frac{3V}{4\pi}}$$

Подставив в эту формулу значение объема, равное $48\pi/3$, получим:

$$r = \sqrt[3]{\frac{3 \cdot 48\pi/3}{4\pi}}$$

Упростив выражение, получим:

$$r = \sqrt[3]{\frac{48}{4}}$$

$$r = \sqrt[3]{12}$$

$$r \approx 2.29$$

Теперь, чтобы найти диаметр шара, нужно умножить радиус на 2. Диаметр шара равен:

$$d = 2r$$

$$d = 2 \cdot 2.29$$

$$d \approx 4.58$$

Ответ: диаметр шара, если объем равен $48\pi/3$, примерно равен 4.58.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос