
Периметр прямоугольника 36 дм, основание на 6 см больше высоты. Найдите стороны прямоугольника.
(Решать не уровнением)

Ответы на вопрос

Давайте обозначим высоту прямоугольника через \(h\) и его основание через \(b\). Условие задачи гласит, что периметр прямоугольника равен 36 дм, а основание на 6 см больше высоты. Мы можем записать два уравнения на основании этих данных.
Периметр прямоугольника равен сумме всех его сторон: \[P = 2h + 2b\]
Также, по условию, основание на 6 см больше высоты: \[b = h + 6\]
Теперь мы можем подставить второе уравнение в первое: \[P = 2h + 2(h + 6)\]
Раскрываем скобки: \[P = 2h + 2h + 12\]
Сгруппируем по переменной \(h\): \[P = 4h + 12\]
Теперь мы знаем, что периметр равен 36 дм: \[36 = 4h + 12\]
Вычитаем 12 с обеих сторон: \[24 = 4h\]
Теперь делим на 4: \[h = 6\]
Теперь мы знаем высоту \(h = 6\). Подставим это значение в уравнение для основания: \[b = h + 6 = 6 + 6 = 12\]
Таким образом, стороны прямоугольника равны 6 дм (высота) и 12 дм (основание).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili