
Вопрос задан 02.06.2018 в 21:46.
Предмет Математика.
Спрашивает Кучеренко Илья.
Неколлинеарные векторы →a, →b и →c связаны соотношением →a+→b+→c=0; модули векторов равны ∣∣→a∣∣=5,
∣∣∣→b∣∣∣=12, ∣∣→c∣∣=13. Вычислите величину →a⋅→b+→b⋅→c+→c⋅→a.

Ответы на вопрос

Отвечает Барсуков Роман.
Эти вектора образуют прям-ный тр-ник со сторонами (5, 12, 13)
Катеты a = 5 и b = 12 перпендикулярны друг другу, поэтому a*b=0.
Произведения b*c и c*a надо вычислять через косинусы углов.
cos(a; c) = |a|/|c| = 5/13. cos(b; c) = |b|/|c| = 12/13.
Скалярные произведения
a*b = 0; b*c = |b|*|c|*cos(b; c) = 12*13*12/13 = 144
c*a = |c|*|a|*cos(a; c) = 5*13*5/13 = 25
Сумма a*b + b*c + c*a = 0 + 144 + 25 = 169



Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili