Вопрос задан 30.04.2020 в 19:16. Предмет Математика. Спрашивает Карбулов Виталий.

В вершине угла равного 9 градусам сидит лягушка. Она делает прыжки равной длины, каждый раз

перемещаясь с одной стороны угла на другую и не возвращаясь в точки, где уже побывала до этого. Какое наибольшее число прыжков может сделать лягушка? *
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Боднар Дмитрий.
РЕШЕНИЕСмотрим на рисунок к обратной задаче -  найти угол для 8 "кваков" и на доске видим простую формулу  - 2 "квака" -> 90/2 = 45°.А теперь решаем нашу задачу с другого конца.ΔABC - равнобедренный -> ∠BCA = α.∠ABC = 180 - 2*α - сумма углов треугольника∠ABD - развернутый =180° -  отсюда ∠DBC = 180 - 2*α.∠ACE - развернутый уголИ, самое главное,∠DCE = 180 - α - ∠DBC = 3*α.Смотрим дальнейшие расчеты и видим, что за каждый прыжок угол увеличивается НА α.Движение "вперёд" угол не больше 90°.И тогда формула движения "вперёд".n*α <=90°.Тогда число прыжков n <=90 : α = 90 : 3 = 30 прыжков -  ОТВЕТ.Лягушонок промахнулся, но мы решили задачу.


0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос