
Вопрос задан 01.06.2018 в 19:15.
Предмет Математика.
Спрашивает Романова Софья.
Помогите, пожалуйста. Нужно доказать,что если p и p²+2 простые числа,то p³+2 тоже простое


Ответы на вопрос

Отвечает Мокрицкая Рената.
Если p=2, то p²+2=6 - составное.
Если p=3, то p²+2=11 - простое, p³+2=27+2=29 - простое, т.е. утверждение верно.
Пусть p>3. Тогда из трех последовательных чисел p-1, p, p+1 одно обязательно делится на 3, причем, это число - не p (p - простое большее 3). Т.е. на 3 делится либо p-1 либо р+1, откуда p²+2=(p-1)(p+1)+3 делится на 3, т.е. p²+2 - составное.
Итак, числа p и p²+2 могут быть одновременно простыми только когда p=3, а в этом случае мы проверили, что p³+2 - тоже простое.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili