
Вопрос задан 07.04.2020 в 23:55.
Предмет Математика.
Спрашивает Слепчевич Вика.
В окружность радиуса R вписан треугольник,вершины которого делят окружность в отношении 2:5:17.Нати
площадь треугольника.

Ответы на вопрос

Отвечает Нұртаза Асем.
Углы треугольника равны: 2*pi/24; 5*pi/24; 17*pi/24
Площадь треугольника равна (1/2)*a*b*sin(c)
a=2R*sin(5*pi/24)
b=2R*sin(17*pi/24)=2R*sin((pi-7*pi)/24=2R*sin(7*pi/24)
sin(c)=sin(2*pi/24)
Тогда
S=(1/2)*2R*sin(5*pi/24)*2R*sin(7*pi/24)*sin(2*pi/24)=
=2R^2*sin(5*pi/24)*sin(7*pi/24)*sin(2*pi/24)=
=2R^2*sin(2*pi/24)*[(1/2)*cos((7*pi-5*pi)/24)-(1/2)*cos(7*pi+5*pi))/24]=
=R^2*sin(pi/12)*cos(pi/12)-R^2*sin(pi/12)cos(pi/2)=
=R^2*(1/2)*sin(pi/6)=
=R^2*(1/2)*(1/2)=
=R^2/4


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili