
Вопрос задан 30.03.2020 в 06:40.
Предмет Математика.
Спрашивает Меганомский Андрей.
В треугольник АВС вписана окружность, и к ней проведена касательная, пересекающая сторону АВ в
точке К, а сторону ВС в точке М. Известно, что АК = 3, КМ = 2, МС = 4. Найдите периметр четырехугольника АКМС.

Ответы на вопрос

Отвечает Скрепченко Светлана.
обозначим точки касания F Q D E соединим их с центром окружности а также соединим вершины искомого четырехугольника с центром окружности
так как касательная перпендикулярна точке касания получим равные прямоугольные треугольники по гипотенузе которая является общей стороной и катету который является радиусу окружности
ΔAFO=ΔOEA ; FKO=KOQ; QMO=MDO;DOC=COE
обозначим соответственно равные стороны этих треугольников через a b c d
получим
a+b=AK=3
c+d=MC=4
PAKMC=2a+2b+2c+2d=2(a+b)+2(c+d)=2*3+2*4=2(3+4)=14


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili