Вопрос задан 20.01.2020 в 00:12. Предмет Математика. Спрашивает Копанев Алексей.

Как найти х в квадрате ??????

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Антонов Артём.
Х*Х. (Квадрат числа)
0 0
Отвечает Лис Ева.
 Вот так это делается:
X*X
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding x in a Square Equation

To find the value of x in a square equation, we need to solve the equation for x. The general form of a square equation is ax^2 + bx + c = 0, where a, b, and c are constants.

There are several methods to solve a square equation, including factoring, completing the square, and using the quadratic formula. Let's explore each method briefly:

1. Factoring: If the equation can be factored, we can set each factor equal to zero and solve for x. However, not all square equations can be factored easily.

2. Completing the Square: This method involves transforming the equation into a perfect square trinomial and then solving for x. It is useful when factoring is not possible or convenient.

3. Quadratic Formula: The quadratic formula is a general formula that can be used to find the solutions of any square equation. It states that for an equation of the form ax^2 + bx + c = 0, the solutions for x are given by:

x = (-b ± √(b^2 - 4ac)) / (2a)

By substituting the values of a, b, and c from the given equation, we can calculate the solutions for x.

Now, let's apply these methods to the specific equation you provided: x^2 + 7x - 144 = 0.

Solving x^2 + 7x - 144 = 0

To solve the equation x^2 + 7x - 144 = 0, we can use the quadratic formula. By comparing the equation with the general form ax^2 + bx + c = 0, we can see that a = 1, b = 7, and c = -144.

Substituting these values into the quadratic formula, we get:

x = (-7 ± √(7^2 - 4 * 1 * -144)) / (2 * 1)

Simplifying further:

x = (-7 ± √(49 + 576)) / 2

x = (-7 ± √625) / 2

Taking the square root of 625, we have:

x = (-7 ± 25) / 2

This gives us two possible solutions for x:

1. x = (-7 + 25) / 2 = 18 / 2 = 9 2. x = (-7 - 25) / 2 = -32 / 2 = -16

Therefore, the solutions to the equation x^2 + 7x - 144 = 0 are x = 9 and x = -16.

Please let me know if there's anything else I can help you with!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос