Вопрос задан 15.01.2020 в 16:46. Предмет Математика. Спрашивает Созонтов Глеб.

Существует ли геометрическая прогрессия, в которой 9-й член равен 13, а 13-й член равен −9?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Адилулы Бакдаулет.

Если 9й член геометрической прогрессии положителен, то все НЕЧЁТНЫЕ члены этой прогресси должны быть также положительными. В данной же задаче 13й член отрицателен, чего быть не может. Покажем это на формулах:

\\b_9=b_1\cdot q^8\Rightarrow b_1=\frac{b_9}{q^8}\\b_1_3=b_1\cdot q^{12}\Rightarrow b_1=\frac{b_1_3}{q^{12}}\\\frac{b_9}{q^8}=\frac{b_1_3}{q^{12}}\\b_9\cdot q^{12}=b_{13}\cdot q^8\\b_{13}=b_9\cdot q^4\\q=\sqrt[4]{\frac{b_{13}}{b_9}}=\sqrt[4]{\frac{-9}{13}}

Подкоренное выражение отрицательно, следовательно, решения нет. А значит и такой геометрической прогрессии не существует.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Да, существует геометрическая прогрессия, в которой 9-й член равен 13, а 13-й член равен -9.

Решение:

Для нахождения геометрической прогрессии, воспользуемся формулой общего члена геометрической прогрессии:

\[a_n = a_1 \cdot q^{n-1}\]

где \(a_n\) - n-й член прогрессии, \(a_1\) - первый член прогрессии, \(q\) - знаменатель прогрессии, \(n\) - номер члена прогрессии.

Из условия задачи у нас есть два уравнения:

\[a_9 = 13\] \[a_{13} = -9\]

Подставим значения в формулу общего члена прогрессии:

\[13 = a_1 \cdot q^{9-1}\] \[-9 = a_1 \cdot q^{13-1}\]

Теперь у нас есть система из двух уравнений с двумя неизвестными \(a_1\) и \(q\). Решим эту систему.

Решение системы уравнений:

Из первого уравнения получаем:

\[13 = a_1 \cdot q^8\]

Из второго уравнения получаем:

\[-9 = a_1 \cdot q^{12}\]

Разделим оба уравнения друг на друга:

\[\frac{13}{-9} = \frac{a_1 \cdot q^8}{a_1 \cdot q^{12}}\]

Упростим:

\[\frac{13}{-9} = \frac{1}{q^4}\]

Перевернем дробь:

\[-\frac{9}{13} = q^4\]

Возведем в четвертую степень:

\[\left(-\frac{9}{13}\right)^4 = q^4\]

Вычислим:

\[q^4 \approx 0.331\]

Теперь найдем \(a_1\) из первого уравнения:

\[13 = a_1 \cdot (0.331)^8\]

Решим это уравнение:

\[a_1 \approx 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос