Вопрос задан 11.01.2020 в 20:31. Предмет Математика. Спрашивает Терехов Андрей.

НОК 24 и 30 как найти

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Beridze Ramaz.
НОК (24;30)
24|2
12 |2
6 |2
3 |3
1 |
24=2^3(это 2 в третьей степени) * 3
30|2
15|3
5 |5
1 |
30=2*3*5
НОК (24;30)=2^3*3*5=8*3*5=120
0 0
Отвечает Каранкевич Ульяна.
Всмысле НОК? это как?
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

НОК (наименьшее общее кратное) двух чисел - это наименьшее положительное число, которое делится на оба этих числа. Существует несколько способов найти НОК, но одним из наиболее распространенных методов является разложение чисел на их простые множители.

Давайте разложим числа 24 и 30 на простые множители:

1. Разложим 24: - \(24 = 2 \times 2 \times 2 \times 3\).

2. Разложим 30: - \(30 = 2 \times 3 \times 5\).

Теперь мы можем найти НОК, выбрав максимальные степени простых чисел, встречающихся в разложении каждого числа:

- НОК(24, 30) = \(2^3 \times 3 \times 5\).

Теперь вычислим это произведение:

- НОК(24, 30) = \(8 \times 3 \times 5 = 120\).

Таким образом, НОК(24, 30) равно 120.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос