Вопрос задан 11.01.2020 в 07:59. Предмет Математика. Спрашивает Гордиенко Арина.

1)sin x= 0; 2)cos x= 0; 3)tg x= 1; 4)cosx=-1; срочно

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Влад.
1) x= Пk 2) x= П/2 + Пk 3) x=П/4 + Пk 4) x=П + 2Пk
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1) sin(x) = 0

The equation sin(x) = 0 can be solved by finding the values of x for which the sine function equals zero. The solutions occur when x is an integer multiple of π (pi). In other words, x can be written as x = nπ, where n is an integer. Some specific solutions include x = 0, x = π, x = 2π, and so on.

2) cos(x) = 0

The equation cos(x) = 0 can be solved by finding the values of x for which the cosine function equals zero. Similar to the previous equation, the solutions occur when x is an odd multiple of π/2. In other words, x can be written as x = (2n + 1)π/2, where n is an integer. Some specific solutions include x = π/2, x = 3π/2, x = 5π/2, and so on.

3) tg(x) = 1

The equation tg(x) = 1 can be solved by finding the values of x for which the tangent function equals one. The solutions occur when x is an odd multiple of π/4. In other words, x can be written as x = (2n + 1)π/4, where n is an integer. Some specific solutions include x = π/4, x = 5π/4, x = 9π/4, and so on.

4) cos(x) = -1

The equation cos(x) = -1 can be solved by finding the values of x for which the cosine function equals negative one. The solutions occur when x is an odd multiple of π. In other words, x can be written as x = (2n + 1)π, where n is an integer. Some specific solutions include x = π, x = 3π, x = 5π, and so on.

Please note that these are general solutions to the equations. Depending on the context or specific range of x, there may be additional solutions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос