Вопрос задан 11.01.2020 в 03:50. Предмет Математика. Спрашивает Мукомел София.

найти точку Q,симметричную точке Р(-5,13) относительно прямой 2х-3у-3=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ким Диляра.
Помогу лисене, так и быть) 
Q(x;y)- искомая точка 
направляющий вектор исходной прямой а(2;-3) тогда нормальный n(3;2) p.s их скалярное произведение равно 0 
строишь прямую, перпендикулярную исходной, она задается вектором n(3;2)- он для нее направляющий и точкой P(-5;13) 
тогда уравнение прямой, перпенд, исходной, будет иметь вид 3x+2y+c=0 подставляешь координаты точки P(-5;13) тогда -15+26+с=0 и с=-11 
уравнение полученной прямой 3x+2y-11=0 
находишь точку пересечения заданных прямых, решаешь систему 
3x+2y-11=0, 
2х-3у-3=0 
первое уравнение системы умножаешь на 2, а второе- на 3 и вычитаешь из первое, второе, находишь y=1 и x=3 
находишь точку O(3;1) 
поскольку точка Q(x;y ) симметрична P, то O- середина отреза PQ и 3=(-5+x)/2 
1=(13+y)/2 и x=11 y=-11 
Q(11;-11)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти точку Q, симметричную точке P(-5,13) относительно прямой 2х - 3у - 3 = 0, нужно использовать формулу для нахождения симметричной точки относительно прямой.

Сначала найдем уравнение перпендикуля

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос