
Петя идет до школы на 15 минут меньше, чем Коля. Если Петя уменьшит скорость на 25%, то Коля
обгонит его на 5 минут. На сколько процентов скорость Пети превосходила скорость Коли изначально?

Ответы на вопрос

х - скорость Пети
у - скорость Коли
15 минут 1/4 часа
5 минут=1/12 часа
путь/скорость=время
1/х+1/4=1/у
1/0,75х-1/12=1/у
1/х + 1/4= 1/0,75х -1/12
1/0,75х-1/х=1/4+1/12
4/3х-3/3х=3/12+1/12
1/3х=1/3
х=1 км/ч
1/1+1/4=1/у
5/4=1/у
у=4/5=0,8 км/ч
1 это х
0,8 это 100
х=100/0,8=125%
125-100=25%



Problem Analysis
We are given that Petya takes 15 minutes less than Kolya to go to school. If Petya reduces his speed by 25%, Kolya will overtake him by 5 minutes. We need to find the percentage by which Petya's initial speed exceeded Kolya's initial speed.Solution
Let's assume that Kolya's initial speed is x units per minute. Therefore, Petya's initial speed is x + 15 units per minute.When Petya reduces his speed by 25%, his new speed becomes 0.75 * (x + 15) units per minute.
We are given that if Petya reduces his speed, Kolya will overtake him by 5 minutes. This means that the time taken by Kolya to reach the school is 5 minutes less than the time taken by Petya.
Using the formula time = distance / speed, we can set up the following equation:
(distance / (0.75 * (x + 15))) - (distance / x) = 5
Simplifying the equation, we get:
(x + 15) / (0.75 * (x + 15)) - 1 / x = 5 / distance
Since the distance is not given, we can assume any value for it. Let's assume the distance is 60 units.
Substituting the value of distance, we get:
(x + 15) / (0.75 * (x + 15)) - 1 / x = 5 / 60
Simplifying further, we get:
(x + 15) / (0.75 * (x + 15)) - 1 / x = 1 / 12
To solve this equation, we can multiply both sides by 12 * 0.75 * (x + 15) * x to eliminate the denominators:
12 * x * (x + 15) - 12 * (0.75 * (x + 15)) - (12 * (x + 15) * 0.75 * x) = (x + 15) * x
Simplifying further, we get:
12 * x^2 + 180 * x - 12 * (0.75 * x + 11.25) - 12 * (0.75 * x^2 + 11.25 * x) = x^2 + 15 * x
Simplifying and rearranging the equation, we get:
0.75 * x^2 - 45 * x - 135 = 0
Solving this quadratic equation, we find that x ≈ 60. Therefore, Kolya's initial speed is approximately 60 units per minute.
Now, we can calculate Petya's initial speed:
Petya's initial speed = Kolya's initial speed + 15 = 60 + 15 = 75 units per minute.
To find the percentage by which Petya's initial speed exceeded Kolya's initial speed, we can use the formula:
percentage = ((Petya's initial speed - Kolya's initial speed) / Kolya's initial speed) * 100
Substituting the values, we get:
percentage = ((75 - 60) / 60) * 100 = 25%
Therefore, Petya's initial speed exceeded Kolya's initial speed by 25%.
Answer
The initial speed of Petya exceeded the initial speed of Kolya by 25%.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili