
Вопрос задан 13.07.2019 в 07:22.
Предмет Математика.
Спрашивает Речапов Рустам.
Периметр прямоугольника составляет 56 см. Каковы его стороны, если этот прямоугольник имеет
наибольшую площадь? Решение.

Ответы на вопрос

Отвечает Мустафаева Динара.
Р=56 см. Ели одна сторона хсм, то другая (28-х)см.
S=х*(28-х)
S⁾(x)=-2x+28
x=14
Прямоугольник будет иметь наибольшую площадь, если это квадрат со стороной 14см.
S=х*(28-х)
S⁾(x)=-2x+28
x=14
Прямоугольник будет иметь наибольшую площадь, если это квадрат со стороной 14см.



Отвечает Халус Юля.
Пусть одна сторона - х, другая (56:2-х)=28-х.
Пусть площадь выражается функцией у=х*(28-х)=28х-х^2
Найдя максимум функции

x=14 точка максимума функции, сторона прямоугольника
28-14=14 другая сторона. получаем квадрат
Ответ: 14см сторона квадрата
Пусть площадь выражается функцией у=х*(28-х)=28х-х^2
Найдя максимум функции
x=14 точка максимума функции, сторона прямоугольника
28-14=14 другая сторона. получаем квадрат
Ответ: 14см сторона квадрата


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili