
Вопрос задан 24.05.2018 в 14:19.
Предмет Математика.
Спрашивает Котик Данила.
В вершинах семнадцатиугольника записали различные целые числа (по одному в каждой вершине). Затем
все числа одновременно заменили на новые: каждое заменили на разность двух следующих за ним по часовой стрелке чисел (из соседнего вычитали следующее за ним). Могло ли произведение полученных чисел оказаться нечётным?

Ответы на вопрос

Отвечает Ворохов Илья.
Нет.
Пусть по кругу стояли числа a1, a2, ..., a17, тогда новые числа будут равны a2 - a3, a3 - a4, ..., a17 - a1, a1 - a2, и их сумма равна 0.
Если сумма 17 чисел чётная, то среди них есть хотя бы одно чётное число (сумма нечетного числа нечётных чисел нечётна). Тогда произведение этих чисел чётно.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili