
Вопрос задан 19.05.2018 в 13:19.
Предмет Математика.
Спрашивает Скобцов Данил.
Вычислить площади фигур, ограниченных линиями: а) y=x^2+2x-3, y=0 б)y=x^2+1, y=10


Ответы на вопрос

Отвечает Ерёмшина Алиса.
Построй графики этих функций. Первый график - явно парабола, ветви которой направлены вверх, а вершина лежит в первом квадранте (положительном) системы координат (дискриминант < 0). Второй график - прямая. Самые легкие ее точки: (0,3;0) и (1;2).
Далее приравняй уравнения друг другу и таким образом найди точки
пересечения графиков.
Смотрим, какой из графиков выше. В данном случае - это будет непременно прямая. Отнимаем от уравнения прямой уравнение параболы:
у = х^2 - 5х + 4.
Теперь берем интеграл от данной функции, нижний и верхний предел которого - это точки пересечения графиков. Это и будет площадь данной фигуры в квадратных единицах.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili