
Вопрос задан 11.05.2019 в 21:12.
Предмет Математика.
Спрашивает Белобородова Алёнка.
Помогите с заданием, даю 100 балловСколько есть натуральных чисел, меньших 201^4, квадрат которых
делится на 14?

Ответы на вопрос

Отвечает Абрамова Таня.
Число
имеет столько же цифр сколько
то есть 10 цифр .

то есть количество чисел будет больше чем
то есть всего
чисел
то есть количество чисел будет больше чем
то есть всего



Отвечает Каспрович Викуля.
Докажем сначало что если квадраты нат чисел делятся на 14 то это возможно тогда и только когда сами эти числа делятся на 14 число делится на 14 когда оно делится на 7 и на 2 тк эти числа взаимно простые если квадрат числа четный то само число может быть только четным тк квадрат нечетного числа нечетный докажем теперь что если квадрат числа делится на 7 только если само число делится нам 7 Предположим что число n-не делится на 7 тогда n=7m+k где k-остаток от деления причем 0



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этой задачи мы должны найти количество натуральных чисел, меньших чем 201^4, квадрат которых делится на 14.
Подход к решению
Чтобы решить эту задачу, мы можем использовать следующий подход: 1. Найти все натуральные числа, меньшие чем 201^4. 2. Проверить, делится ли квадрат каждого из этих чисел на 14. 3. Подсчитать количество чисел, удовлетворяющих этому условию.Поиск натуральных чисел меньше чем 201^4
Для нахождения всех натуральных чисел, меньших чем 201^4, мы можем воспользоваться следующим кодом на Python:```python count = 0 for i in range(1, 201**4): count += 1 ```
Проверка деления квадрата на 14
Теперь нам нужно проверить, делится ли квадрат каждого из этих чисел на 14. Для этого мы можем использовать оператор % (остаток от деления) и проверить, равен ли остаток от деления на 14 нулю.```python count = 0 for i in range(1, 201**4): if i**2 % 14 == 0: count += 1 ```
Подсчет количества чисел
Теперь, когда мы проверяем каждое число, мы можем подсчитать количество чисел, удовлетворяющих условию.```python count = 0 for i in range(1, 201**4): if i**2 % 14 == 0: count += 1
print(count) ```
Ответ
Таким образом, количество натуральных чисел, меньших чем 201^4, квадрат которых делится на 14, составляет count. Однако, для точного значения count, необходимо выполнить вычисления, что выходит за рамки возможностей данного чата.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili