
В математическом конкурсе участвовало треть девочек и пятая часть мальчиков класса. Всего в
конкурсе приняла участие четверть учеников класса. Кого в классе больше: мальчиков или девочек и на сколько, если в классе более 30, но менее 40 учащихся?

Ответы на вопрос

у мальчиков всего в классе
1/3 от х = х/3 девочек участвовало в конкурсе
у/5 мальчиков участвовало в конкурсе
(х + у) всего учеников в классе
(9х + у)/4 всего учеников участвовало в конкурсе
Получаем уравнение
х/3 + у/5 = (х + у)/4
и неравенство
30< (x + y) < 40
Решаем уравнение
Приведя к общему знаменателю 60, получим
20х + 12у = 15*(х + у)
20х + 12у = 15х + 15у
20х - 15х = 15у - 12у
5х = 3у
х = 3у/5
Далее решаем способом подбора, где у/5 - целое число
При у₁ = 5 получаем х₁ = 3 , сумма 5 + 3 = 8, не удовлетворяет условию
30< (x + y) < 40
При у₂ = 10 получаем х₂ = 6 , сумма 10 + 6 = 16, не удовлетворяет условию
30< (x + y) < 40
При у₃ = 15 получаем х₃ = 9, сумма 15 + 9 = 24, не удовлетворяет условию
30< (x + y) < 40
При у₄ = 20 получаем х₄ = 12 , сумма 20 + 12 = 32, удовлетворяет условию
30< (x + y) < 40
Значит, в классе 12 девочек и 20 мальчиков
20 - 12 = 8
Ответ: в классе на 8 мальчиков больше, чем девочек.



Analysis and Solution
To determine whether there are more boys or girls in the class, we need to analyze the information provided. Let's break it down step by step:
1. The problem states that a third of the girls and a fifth of the boys in the class participated in the math competition. 2. It also states that a quarter of the students in the class participated in the competition.
Let's assume that there are a total of x students in the class.
Based on the information given, we can write the following equations:
- Number of girls participating: (1/3)x - Number of boys participating: (1/5)x - Total number of students participating: (1/4)x
We can set up an equation to represent the total number of students participating:
(1/3)x + (1/5)x = (1/4)x
To solve this equation, we can find a common denominator and simplify:
(5/15)x + (3/15)x = (4/15)x
Combining like terms:
(8/15)x = (4/15)x
Now, we can solve for x by multiplying both sides of the equation by 15:
8x = 4x
Dividing both sides of the equation by 4:
x = 0
This means that there are no students in the class, which doesn't make sense. There might be an error in the given information or in the calculations.
Please double-check the information provided or provide additional details to help us solve the problem accurately.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili