Вопрос задан 09.05.2019 в 03:09. Предмет Математика. Спрашивает Матвіїв Анета.

Решите систему 3х+4у=55 7х-у=56 и уравнение -4х+20=11-9-2х

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Клипа Влад.
3x+4y=55
y=7x-56
3x+4(7x-56)=56
31x=279
x=9
3.9+4y=55
4y=28=7

-4x+2x=-9-20+11
-2x=-18
x=9
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решим систему уравнений:

3х + 4у = 55 (1) 7х - у = 56 (2)

Умножим уравнение (2) на 4, чтобы избавиться от коэффициента у при х:

28х - 4у = 224 (3)

Теперь сложим уравнения (1) и (3):

3х + 4у + 28х - 4у = 55 + 224

31х = 279

Разделим обе части уравнения на 31:

х = 279 / 31

х ≈ 9

Подставим найденное значение х в уравнение (2):

7 * 9 - у = 56

63 - у = 56

Вычтем 63 из обеих частей уравнения:

-у = 56 - 63

-у = -7

Умножим обе части уравнения на -1, чтобы избавиться от отрицательного коэффициента:

у = 7

Таким образом, получаем решение системы уравнений: х ≈ 9 и у = 7.

Теперь решим уравнение -4х + 20 = 11 - 9 - 2х:

Перенесем все х на одну сторону:

-4х + 2х = 11 - 9 - 20

-2х = -18

Разделим обе части уравнения на -2:

х = (-18) / (-2)

х = 9

Таким образом, решение уравнения -4х + 20 = 11 - 9 - 2х равно х = 9.

Итак, решение системы уравнений 3х + 4у = 55, 7х - у = 56 и уравнения -4х + 20 = 11 - 9 - 2х состоит из двух значений: х = 9 и у = 7.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос