
Помогите, пожалуйста, с подробным решением!!! Из города A в город B ведут две дороги: шоссе, длина
которого 75 км, и просёлочная дорога, длина которой 81 км. Из города A в город B одновременно выехали автобус и грузовая машина. Автобус ехал по шоссе и проезжал в час на 5 км больше, чем грузвая машина, которая ехала по просёлочной дороге. Автобус прибыл в город B на 18 минут раньше грузовой машины. Найди скорость грузовой машины.

Ответы на вопрос

(х+5) км/ч- скорость автобуса
18мин.=18:60=0,3ч.
81/х - 75/(х+5)=0,3
81(х+5)-75х=0,3х(х+5)
6х+405-0,3х²-1,5х=0
0,3х²-4,5х-405=0 I :0,3
х²-15х-1350=0
D=b²-4ac=(-15)²-4·(-1350)=225+5400=5625



Problem Analysis
We are given that there are two roads leading from city A to city B: a highway that is 75 km long and a dirt road that is 81 km long. A bus and a truck left city A for city B at the same time. The bus traveled on the highway and drove 5 km per hour faster than the truck, which traveled on the dirt road. The bus arrived in city B 18 minutes earlier than the truck. We need to find the speed of the truck.Solution
Let's assume the speed of the truck is x km/h. Since the bus traveled 5 km/h faster than the truck, the speed of the bus is x + 5 km/h.To find the time it took for each vehicle to travel their respective distances, we can use the formula time = distance / speed.
The time it took for the bus to travel the distance of the highway (75 km) is 75 / (x + 5) hours.
The time it took for the truck to travel the distance of the dirt road (81 km) is 81 / x hours.
We are given that the bus arrived in city B 18 minutes earlier than the truck. Since 18 minutes is equal to 18/60 = 0.3 hours, we can set up the following equation:
(75 / (x + 5)) - (81 / x) = 0.3
To solve this equation, we can multiply through by x(x + 5) to eliminate the denominators:
75x - 81(x + 5) = 0.3x(x + 5)
Simplifying the equation:
75x - 81x - 405 = 0.3x^2 + 1.5x
0.3x^2 + 1.5x - 6x - 405 = 0
0.3x^2 - 4.5x - 405 = 0
Now we can solve this quadratic equation to find the value of x, which represents the speed of the truck.
Quadratic Equation Solution
Using the quadratic formula, x = (-b ± √(b^2 - 4ac)) / (2a), where a = 0.3, b = -4.5, and c = -405, we can find the two possible values of x.Calculating the discriminant, D = b^2 - 4ac:
D = (-4.5)^2 - 4(0.3)(-405) = 20.25 + 486 = 506.25
Since the discriminant is positive, we have two real solutions.
Using the quadratic formula:
x = (-(-4.5) ± √(506.25)) / (2(0.3))
Simplifying:
x = (4.5 ± √(506.25)) / 0.6
Calculating the square root of 506.25:
√(506.25) ≈ 22.5
Substituting the values:
x = (4.5 ± 22.5) / 0.6
Calculating the two possible values of x:
x₁ = (4.5 + 22.5) / 0.6 ≈ 45 km/h
x₂ = (4.5 - 22.5) / 0.6 ≈ -30 km/h
Since the speed of the truck cannot be negative, we discard the negative solution.
Answer
The speed of the truck is approximately 45 km/h.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili